Sebutkan Beberapa Algoritma Python Yang Cukup Populer Dalam Pengurutan Data
Berapa lama waktu untuk mempelajari Python?
Waktu yang Anda butuhkan untuk belajar python pemula akan bergantung pada beberapa faktor, termasuk tujuan utama Anda belajar bahasa pemrograman ini. Misalnya, jika Anda ingin mempelajari python sekadar untuk mengautomasi tugas tertentu di tempat kerja, Anda mungkin dapat mempelajarinya lebih cepat.
Berbeda halnya jika Anda ingin mempelajari python secara mendalam untuk mendapatkan pekerjaan sebagai analis data, Anda mungkin membutuhkan waktu yang lebih lama. Berikut adalah beberapa faktor lain yang dapat memengaruhi seberapa cepat Anda dapat mempelajari python:
Secara umum, dibutuhkan sekitar dua hingga enam bulan untuk mempelajari dasar-dasar python. Namun, Anda bisa belajar untuk menulis program pendek pertama dalam hitungan menit. Sementara itu, menguasai python secara lengkap bisa memakan waktu berbulan-bulan hingga bertahun-tahun.
Perbedaan Utama SQL dan Python
Perbedaan SQL dan Python yang paling signifikan adalah SQL digunakan oleh developer untuk mengakses dan mengekstrak data dari database. Python sendiri digunakan untuk menganalisis dan memanipulasi data dengan menjalankan tes regresi, tes deret waktu (time-series test), dan bentuk penghitungan data lainnya.
SQL adalah bahasa pemrograman yang sederhana dan memiliki ragam fungsi yang lebih sempit dibandingkan dengan Python. Dengan pustakanya yang besar, kode Python bisa diintegrasikan dengan banyak aplikasi lain. Python adalah bahasa pemrograman fleksibel dengan banyak fitur yang membuatnya disukai dan bisa dipelajari oleh nondeveloper sekaligus.
Baru-baru ini, sebuah survei dari Statista menunjukkan bahwa empat database management system paling populer di dunia adalah Oracle, MySQL, Microsoft SQL Server, dan PostgreSQL. Keempat sistem ini memiliki dasar SQL yang menunjukkan bahwa siapapun yang ingin menjadi seorang profesional di dunia data science akan mendapatkan keuntungan jika memahami SQL.
Perbandingan dengan Algoritma Pengurutan Lain
Untuk memahami posisi Selection Sort dalam konteks algoritma pengurutan lainnya, mari kita bandingkan dengan beberapa algoritma pengurutan yang umum digunakan:
Berikut ini implementasi algoritma selection sort dalam Bahasa pemrograman Python:
Yuk, Kita Mulai Rintis Karir Data Science dari Sekarang!
Profesi Data Scientist di era transformasi teknologi kini menjadi profesi yang populer. Siapa saja dan dari mana saja latar belakang pendidikannya dapat berkarir menjadi data scientist. Kita dapat memulai belajar otodidak atau melalui kursus data science baik online maupun offline. Oleh karena itu untuk mengetahui lebih lanjut terkait data scientist kita dapat mempelajarinya di DQLab lohh. Caranya sangat mudah, yaitu cukup signup di DQLab.id/signup dan nikmati momen belajar gratis bersama DQLab dengan mengakses module gratis dari R, Python atau SQL!
Penulis : Latifah Uswatun Khasanah
Editor : Annissa Widya Davita
Struktur data dan algoritma pada python merupakan dua konsep mendasar dalam dunia computer science. Kedua konsep tersebut merupakan tools yang paling diperlukan oleh programmer di seluruh dunia. Struktur data pada python berhubungan dengan penyimpanan database sedangkan algoritma python merupakan serangkaian instruksi rinci yang membantu dalam pemrosesan data untuk tujuan tertentu. Struktur data adalah serangkaian cara untuk mengatur dan menyimpan data serta berisi hubungan data dan berbagai operasi logis yang bisa diterapkan pada data. Struktur data dibagi menjadi dua, yaitu struktur data primitif dan non primitif. Data yang termasuk kedalam tipe primitif adalah integer, float, strings, dan boolean, sedangkan yang termasuk data non primitif adalah array, list, tuple, dictionary, sets, dan files, Beberapa tipe data non primitif seperti list, tuple, dictionary, dan sets sudah ada di dalam python.
Algoritma python merupakan sekumpulan instruksi yang dijalankan untuk mendapatkan solusi dari masalah yang ada. Algoritma tidak hanya dikhususkan untuk bahasa, oleh karena itu algoritma dapat diimplementasikan dalam beberapa bahasa pemrograman. Tidak ada aturan standar untuk menulis algoritma. Algoritma ini bergantung pada sumber daya dan masalah yang akan dipecahkan. Namun, ada konstruksi kode umum yang bisa digunakan, seperti flow control (if-else) dan loop (do, while, for). Pada artikel kali ini DQLab akan membahas struktur data dan algoritma pada python. Penasaran? Yuk simak artikel ini sampai akhir!
Kelebihan dan Kekurangan Selection Sort
Macam-macam library python
Ada beberapa jenis library yang populer di kalangan data scientist, di antaranya:
TensorFlow adalah platform end-to-end open-source untuk membuat aplikasi machine learning atau komputasi numerik cepat yang dibuat dan dirilis oleh Google. Library dasar ini dapat dipakai untuk membuat model deep learning secara langsung atau menggunakan library wrapper untuk menyederhanakan proses yang dibangun di atas TensorFlow.
Fitur utama TensorFlow meliputi bekerja secara efisien dengan ekspresi matematika yang melibatkan array multidimensi, dukungan yang baik dari jaringan saraf yang dalam dan konsep machine learning, hingga komputasi GPU/CPU di mana kode yang sama dapat dieksekusi pada kedua arsitektur.
NumPy (Numerical Python) adalah library python yang digunakan untuk bekerja dengan array dan juga memiliki fungsi yang bekerja dalam domain aljabar linier, transformasi fourier, dan matriks. Library yang dibuat pada 2005 oleh Travis Oliphant ini merupakan proyek open source sehingga Anda dapat menggunakannya secara bebas. Meski python memiliki daftar yang melayani tujuan array, prosesnya begitu lambat sehingga memerlukan NumPy yang bisa menyediakan objek array hingga 50 kali lebih cepat daripada daftar python tradisional.
SciPy (Scientific Python) adalah perpustakaan open-source yang digunakan untuk perhitungan ilmiah tingkat tinggi. Jenis library ini dibangun di atas ekstensi NumPy dan bekerja bersama untuk menangani komputasi yang kompleks. NumPy memungkinkan pengurutan dan pengindeksan data array, sementara kode data numerik disimpan di SciPy. Library python ini juga banyak digunakan oleh para developer dan engineer.
Pandas adalah perpustakaan penting bagi para data scientist. Library untuk machine learning yang bersifat open source ini menyediakan struktur data tingkat tinggi yang fleksibel serta berbagai alat analisis. Penggunaannya memudahkan analisis data, manipulasi data, dan pembersihan data. Pandas mendukung berbagai jenis operasi seperti penyortiran, pengindeksan ulang, iterasi, penggabungan, konversi data, visualisasi, agregasi, dan lain sebagainya.
Jenis library ini bertanggung jawab untuk merencanakan data numerik. Itulah alasan Matplotlib digunakan dalam analisis data. Library python yang bersifat open source ini dapat memplot angka-angka berdefinisi tinggi seperti diagram lingkaran, histogram, scatterplot, grafik, dan lain-lain.
Keras adalah API deep learning yang ditulis dengan python dan berjalan di atas platform machine learning TensorFlow. Dengan lebih dari satu juta pengguna individu pada akhir tahun 2021, penggunaan Keras saat ini terbilang masif, baik di industri maupun komunitas penelitian. Bersama dengan TensorFlow, Keras lebih banyak dipakai daripada solusi deep learning lainnya dan sangat populer di kalangan startup yang menempatkan deep learning sebagai inti dari produk yang ditawarkan.
Tanpa disadari, Anda pun terus berinteraksi dengan fitur yang dibuat dengan Keras (fitur yang salah satunya digunakan di Netflix). Keras & TensorFlow juga merupakan favorit di antara para peneliti, bahkan diadopsi oleh para peneliti di organisasi ilmiah besar, seperti CERN dan NASA.
Scikit-learn adalah library python terkenal yang digunakan untuk data kompleks. Perpustakaan open source ini mendukung machine learning dengan mendukung berbagai algoritma yang diawasi dan tidak diawasi seperti regresi linier, klasifikasi, pengelompokan, dan lain sebagainya. Library ini bekerja sama dengan Numpy dan SciPy.
PyTorch adalah perpustakaan machine learning terbesar yang mengoptimalkan komputasi tensor. Ia memiliki API yang kaya untuk melakukan komputasi tensor dengan akselerasi GPU kuat, membuatnya mampu membantu memecahkan masalah aplikasi yang terkait dengan jaringan saraf.
Perpustakaan tensor yang dioptimalkan ini utamanya digunakan untuk aplikasi deep learning menggunakan GPU dan CPU. Library phyton yang sebagian besar dikembangkan oleh tim Riset AI Facebook ini merupakan salah satu yang paling banyak digunakan di samping TensorFlow dan Keras.
Scrapy juga termasuk perpustakaan open source yang digunakan untuk mengekstraksi data dari website. Library ini menyediakan perayapan web yang sangat cepat, pengikisan layar tingkat tinggi, serta juga bisa digunakan untuk data mining dan pengujian data otomatis.
Belajar python dapat memperluas peluang pasar kerja global. Dengan belajar python yang adalah salah satu dari tiga bahasa pemrograman teratas di dunia, Anda berkesempatan memasuki dunia kerja dalam industri yang diprediksi akan menjadi paling populer ini, sehingga dapat membangun karier yang lebih baik.
Faktanya, menurut Indeks PopularitY of Programming Language (PYPL) yang dibuat dengan menganalisis frekuensi tutorial bahasa yang dicari di Google, python adalah bahasa pemrograman paling populer di seluruh dunia. Jadi, jika Anda ingin berkarier di negara lain, seperti Swiss atau Australia, belajar python akan membantu Anda memiliki peluang bagus untuk mendapatkan pekerjaan di sana. Di mana pun Anda ingin bekerja, menambahkan python ke dalam daftar keahlian Anda bisa menjadi “tiket” bekerja ke mana saja.
Algoritma dalam Python
Beberapa jenis algoritma pada python adalah algoritma pencarian (searching algorithm), algoritma grafik (graph algorithm), dan algoritma analisis (analyst algorithm). Algoritma pencarian membantu dalam memeriksa dan mengambil elemen dari struktur data yang berbeda. Ada dua tipe algoritma pencarian, yaitu algoritma pencarian linier dan biner. Dalam algoritma pencarian linier, setiap item dicari secara berurutan satu persatu sedangkan dalam algoritma pencarian biner, interval pencarian berulang kali dibagi menjadi dua. Jika elemen yang akan dicari lebih rendah dari komponen pusat interval, maka interval akan dipersempit ke bagian bawah atau ke atas. Proses ini akan dilakukan berulang-ulang hingga nilainya ditemukan. Dalam algoritma grafik (graph algorithm) ada dua metode, yaitu depth-first traversal (DFS) dan breadth-first transversal (BFS). Pada algoritma DFS grafik melintas dalam gerakan yang semakin ke dalam. Algoritma ini diimplementasikan dengan python menggunakan tipe dataset. Dalam algoritma BFS sebuah grafik melintas dengan gerakan melebar. Algoritma ini diimplementasikan pada python dengan menggunakan struktur data list. Dalam algoritma analisis (analyst algorithm) ada dua algoritma, yaitu algoritma analisis apriori dan algoritma analisis posterior. Algoritma analisis apriori merupakan analisis teoritis dari algoritma sebelum diimplementasikan. Algoritma analisis posterior mengacu pada analisis empiris dari algoritma setelah diterapkan dan menggunakan bahasa pemrograman untuk mengimplementasikan algoritma yang dipilih serta dieksekusi dengan komputer.
Baca juga : Belajar Data Science: Pahami Penggunaan Machine Learning pada Python
Gunakan Kode Voucher "DQTRIAL", dan simak informasi di bawah ini mendapatkan 30 Hari FREE TRIAL:
Buku ini merupakan buku ajar Algoritma Pemrograman yang didalamnya terkandung pelajaran mengenai dasar-dasar pemrograman komputer. Bahasa pemrograman Python digunakan karena bahasa ini sangat populer dan menjadi salah satu bahasa pemrograman terbaik untuk belajar. Besar harapan buku ini dapat menjadi teman belajar mahasiswa sehingga dapat menguasai dasar-dasar pemrograman komputer. Buku ini dimulai dari pengantar Algoritma yang disertai dengan materi penunjang yaitu perangkat lunak flowgorithm. Selanjutnya, pengguna buku ini akan diperkenalkan pada struktur Algoritma yang nantinya digunakan sebagai dasar terkait implementasinya pada Bahasa pemrograman Python. Sehingga selain teori, pengguna buku juga dapat langsung mempraktikkannya. Materi lain pada buku ini mencakup Bahasa pemrograman Python, komponen dasar pemrograman, Percabangan, Pengulangan, Array, List, Tuple, Dictionary serta subrutin baik menggunakan prosedur maupun fungsi.
Ketika kita ingin berbicara tentang bahasa pemrograman di zaman yang serba digital ini, SQL dan Python termasuk dalam daftar bahasa yang wajib dipelajari oleh programmer, developer, data analyst, dan software engineer. Dengan adanya transformasi digital besar-besaran, memiliki keahlian lebih seperti ini dapat membuat Anda semakin menonjol dibandingkan kandidat lain. Jika Anda adalah pemula dan ingin memulai karir sebagai seorang programmer, ketahui perbedaan SQL dan Python di bawah ini.
SQL yang merupakan singkatan dari Structure Query Language, yakni bahasa pemrograman yang memungkinkan developer untuk mengatur dan menarik informasi dalam database, bahkan membuat database mereka sendiri. Banyak industri menyimpan informasi di dalam database menggunakan tabel dan bisa diambil menggunakan SQL.
Diakui sebagai bahasa pemrograman standar oleh International Organization of Standardization (ISO), SQL adalah salah satu keterampilan yang paling dicari di dalam dunia industri. Perusahaan Anda bisa saja menggunakan bahasa pemrograman lain, tapi Anda tetap akan membutuhkan SQL saat ingin mengambil data dari database.
Beberapa contoh database yang digunakan developer SQL antara lain:
Kelebihan SQL adalah mudah dipelajari oleh pemula. Menggunakan bahasa kueri dan bukannya bahasa pemrograman, sintaks yang digunakan SQL relatif lebih mudah dipahami dan mirip dengan kalimat dalam bahasa Inggris.
Python adalah bahasa pemrograman populer yang multifungsi, sebab bahasa pemrograman ini dapat digunakan untuk berbagai macam aplikasi, seperti pengembangan website dan software, analisis data, pengembangan gim, dan masih banyak lagi.
Karena mampu bekerja dan diintegrasikan di berbagai platform juga mudah dibaca, Python telah menjadi salah satu bahasa preferensi untuk mengeksplorasi data. Banyak industri menggunakan software, aplikasi, serta program yang ada di Python. Bagian terbaiknya, programmer dan developer bisa bisa menulis kode Python menggunakan text editor yang dapat memuat dan menyimpan teks menggunakan pengkodean karakter Unicode ASCII atau UTF-8.
Saat ini, komunitas pengguna Python sangat besar. Bahkan, pada 2018 peringkat IEEE (Institute of Electrical and Electronics Engineers) menunjukkan bahwa Python adalah bahasa pemrograman yang paling dicari. Python juga bersifat open source. Artinya, hak cipta semua versi modern Python berada di bawah lisensi kompatibel dengan GPL yang disertifikasi oleh open source initiative.
Struktur Data Primitif
Struktur data primitif merupakan struktur data dasar pada python yang berisi nilai data murni, sederhana, dan berfungsi sebagai blok untuk memanipulasi data. Ada empat variabel pada struktur data primitif, yaitu integer (bilangan bulat), float, string, dan boolean. Tipe data string digunakan untuk mewakili data numerik, yaitu bilangan bulat positif atau negatif tanpa titik desimal, contohnya -2, 1, atau 10. Data float menandakan bilangan real floating point. Data ini digunakan untuk mewakili bilangan rasional, biasanya berisi titik desimal seperti 1,5 atau 5,32. Karena python merupakan bahasa pemrograman yang diketik secara dinamis, tipe data yang disimpan oleh objek bisa berubah dan tidak perlu mendefinisikan tipe variabel secara eksplisit. Tipe data string menunjukkan kumpulan huruf, kata, maupun karakter alfanumerik. Tipe ini dibuat dengan memasukkan serangkaian karakter dan dipisahkan dengan tanda petik satu maupun dua. Contoh penulisan tipe data string pada python adalah "kucing", "meja", ataupun "kelinci". Tipe data boolean berguna dalam perbandingan bersyarat dan dapat mengambil nilai TRUE maupun FALSE.
Baca juga : 3 Jenis Algoritma Machine Learning yang Dapat Digunakan di Dunia Perbankan